Susceptibility of Hermansky-Pudlak mice to bleomycin-induced type II cell apoptosis and fibrosis.

نویسندگان

  • Lisa R Young
  • Rajamouli Pasula
  • Peter M Gulleman
  • Gail H Deutsch
  • Francis X McCormack
چکیده

Pulmonary inflammation, abnormalities in type II cell and macrophage morphology, and pulmonary fibrosis are features of Hermansky-Pudlak Syndrome (HPS), a recessive disorder associated with intracellular trafficking defects. We have previously reported that "Pearl" (HPS2) and "Pale Ear" (HPS1) mouse models have pulmonary inflammatory dysregulation and constitutive alveolar macrophage (AM) activation (Young LR et al., J Immunol 2006;176:4361-4368). In the current study, we used these HPS models to investigate mechanisms of lung fibrosis. Unchallenged HPS1 and HPS2 mice have subtle airspace enlargement and foamy AMs, but little or no histologic evidence of lung fibrosis. Seven days after intratracheal bleomycin (0.025 units), HPS1 and HPS2 mice exhibited increased mortality and diffuse pulmonary fibrosis compared to strain-matched C57BL/6J wild-type (WT) mice. HPS mice had significantly increased collagen deposition, and reduced quasi-static and static compliance consistent with a restrictive defect. The early airway and parenchymal cellular inflammatory responses to bleomycin were similar in HPS2 and WT mice. Greater elevations in levels of TGF-beta and IL-12p40 were produced in the lungs and AMs from bleomycin-challenged HPS mice than in WT mice. TUNEL staining revealed apoptosis of type II cells as early as 5 h after low-dose bleomycin challenge in HPS mice, suggesting that type II cell susceptibility to apoptosis may play a role in the fibrotic response. We conclude that the trafficking abnormalities in HPS promote alveolar apoptosis and pulmonary fibrosis in response to bleomycin challenge.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epithelial-macrophage interactions determine pulmonary fibrosis susceptibility in Hermansky-Pudlak syndrome.

Alveolar epithelial cell (AEC) dysfunction underlies the pathogenesis of pulmonary fibrosis in Hermansky-Pudlak syndrome (HPS) and other genetic syndromes associated with interstitial lung disease; however, mechanisms linking AEC dysfunction and fibrotic remodeling are incompletely understood. Since increased macrophage recruitment precedes pulmonary fibrosis in HPS, we investigated whether cro...

متن کامل

Effect of thalidomide on the alveolar epithelial cells in the lung fibrosis induced by bleomycin in mice

Introduction: Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. In the adults type I and II pneumocytes, forms Components of the alveolar epithelial cells. In this study, we investigated the effect of thalidomide on the alveolar epithelial cells (type I and II pneumocytes) in ...

متن کامل

MAP1LC3B overexpression protects against Hermansky-Pudlak syndrome type-1-induced defective autophagy in vitro.

Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder, and some patients with HPS develop pulmonary fibrosis, known as HPS-associated interstitial pneumonia (HPSIP). We have previously reported that HPSIP is associated with severe surfactant accumulation, lysosomal stress, and alveolar epithelial cell type II (AECII) apoptosis. Here, we hypothesized that defective autophagy mig...

متن کامل

Generation of Hermansky Pudlak syndrome type 2 (HPS2) induced pluripotent stem cells (iPSCs).

Hermansky-Pudlak syndrome type 2 (HPS2) is a rare autosomal recessive disorder resulting from functional mutations in the adaptor-related protein complex 3, beta 1 subunit (AP3B1) gene. This gene plays a role in organelle biogenesis associated with melanosomes, platelet dense granules, and lysosomes. Here we describe the generation of an HPS2 iPS cell line (CHOPHPS2) using a Cre-excisable polyc...

متن کامل

Nos2 deficiency enhances carbon tetrachloride-induced liver injury in aged mice

Objective(s): As a multifunctional molecule, NO has different effects on liver injury. The present work aimed to investigate the effects of Nos2 knockout (KO) on acute liver injury in aged mice treated with carbon tetrachloride (CCl4). Materials and Methods: The acute liver injury model was produced by CCl4 at 10 ml/kg body weight in 24-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of respiratory cell and molecular biology

دوره 37 1  شماره 

صفحات  -

تاریخ انتشار 2007